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FINAL REPORT 

 
To: technicalreports@afosr.af.mil 
Subject: Final Report to Dr. Enrique Parra 
Grant Title: Ultrafast Imaging of Electronic Motion in Atoms and Molecules 
Grant #: FA9550-12-1-0149 
Reporting Period: 01 April 2012 to 30 September 2015 
 
Abstract 
This project had both and experimental and theoretical component. In the experimental 
effort, a new setup was designed and constructed to deliver femtosecond electron pulses 
for scattering and diffraction experiments on a gaseous target of atoms or molecules. An 
optical setup was designed and constructed to compensate for the blurring of the temporal 
resolution due to the velocity mismatch between the laser and electrons, which we 
showed can be reduced to less than 100 fs. The charge and duration of the electron pulses 
were measured with a home-made faraday cup and laser-triggered streak camera, 
respectively. Both are retractable and can measure the beam in-situ. The gun was shown 
to generate pulses with more than a million electrons per pulse. The pulse duration was 
compressed from 20 ps to 700 fs, as measured with the streak camera. Active 
stabilization was implemented on the laser repetition rate and beam pointing to reduce the 
timing jitter. In the theory component of the project, we have calculated the distortion of 
a helium atom in an intense laser fieldin support of planned experimental measurements. 
We have developed a new theory for ultrafast electron diffraction from a time-varying 
coherent electronic state of a target atom or molecule that accounts for inelastic processes 
occurring within the bandwidth of the incident electron pulse. Finally, we have analyzed 
energy-resolved ultrafast electron diffraction from a time-varying coherent electronic 
target state.  Simulations were carried out in all cases to illustrate the key points of our 
new theory and of the advantages of energy-resolved ultrafast electron diffraction. 

  

Accomplishments 
 
Experimental component (Martin Centurion, P.I.) 
We have designed, constructed and tested an electron source to deliver femtosecond 
electron pulses on an atomic or molecular target for time-resolved scattering and 
diffraction experiments. The setup comprises a laser triggered photocathode with DC 
acceleration, a beam transport line with two magnetic lenses, a resonant radio-frequency 
(RF) cavity for bunch compression, an experimental chamber that houses a laser-
triggered streak camera and a detection chamber that houses a faraday cup and a 
phosphor screen that is imaged onto a CCD camera. We first describe each component, 
and then the results of the characterization. 

 

I. Experimental setup 
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Electron pulse generation. The electron pulses are generated by shining a UV laser 
pulse on a solid photocathode. The UV pulse is generated using a home-made frequency 
tripler (from 800 nm to 267 nm). The electrons are accelerated in a static field to kinetic 
energies between 90 keV and 100 keV. 

Beam transport. The beam is collimated and focused using two magnetic lenses, one 
immediately after the anode and a second further downstream (the position can be 
adjusted). Both lenses are solenoids outside the tube that transports the beam in vacuum. 

Pulse compression. A temperature stabilized RF cavity is used to compress the electron 
pulses at the target position. The cavity has a longitudinal field that changes direction as 
the electron pulse traverses the cavity. The effect of the cavity is to reverse the velocity 
distribution of the pulse, accelerating the electrons in the trailing edge and slowing down 
the electrons in the front. After exiting the cavity, the pulse will self-compress. The 
distance to the temporal focus is determined by the magnitude of the electric field in the 
cavity. The cavity fields need to be synchronized with the laser pulses. 

Synchronization. The synchronization is achieved using a synchronizer that takes a 75 
MHz electronic signal from the femtosecond laser oscillator as the input. The input signal 
is multiplied by 40x to operate at a standard frequency of 3 GHz, where there are 
standard microwave components readily available. A signal power between 50 W and 
200 W is delivered to the cavity. In order to fit the resonance of the cavity, the repetition 
rate of the laser was changed to 75 MHz. The repetition rate is actively stabilized with a  
feedback loop, using a frequency counter and a piezo mirror inside the laser cavity. The 
laser repetition rate is stable to better than 10 Hz RMS, which is sufficient to stay at the 
peak of the cavity resonance that has a width on the order of 100 kHz. 

Laser system. The laser pulses from the oscillator are amplified to an energy of 2 mJ at a 
repetition rate of 5 kHz, duration of 50 fs and wavelength of 800 nm. A small fraction of 
the total pulse energy (about 0.2 mJ) is split to trigger the photocathode, after going 
through a third harmonic generator.  

Velocity mismatch (VM) compensation. An optical setup was implemented to 
compensate for the velocity mismatch between the laser and electron pulses. At an energy 
of 100 keV, the electrons travel with roughly half the speed of light. The result is that as 
the electrons and laser traverse a sample, the time delay between them is not constant, 
which blurs the resolution of the experiments. Even for thin targets of less than 0.5 mm, 
VM will degrade the resolution to several picoseconds. We have shown that this can be 
compensated for a target as thick as 1 mm while keeping effect of VM to less than 100 fs, 
by using a lser pulse with a tilted intensity front. The laser pulse propagates at an angle to 
the electron beam, such that the longitudinal velocity of both pulses is match. Then, the 
intensity front of the laser is tilted such that it is parallel to the pulse front of the electrons. 
This can be achieved by reflecting the laser pulse from a diffractive element (a custom 
grating in this case) and then imaging the grating surface at the target position. The 
matching is only perfect in one plane, but the depth of focus can be designed such that 
there is a fairly good match throughout the target.  

Streak camera. A miniaturized streak camera was built to measure the pulse duration. A 
parallel plate capacitor (with spacing of 0.5 mm) is charged to a potential difference of 2 
kV. The capacitor is charged with a home-made pulsed high voltage power supply to 
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achieve a high electric field. The capacitor is discharged using a laser-triggered GaAs 
photoswitch. The small size of the streak camera results in a rapid oscillation of the field 
upon discharge (it behaves as an RLC circuit). The rapidly changing electric field allows 
us to measure the electron pulse duration with a resolution of 300 fs.  

 

II. Measurements 
Bunch charge. The charge 
in each pulse was measured 
using a home-made 
retractable Faraday cup that 
can be moved in and out of 
the beam path, directly in 
front of the phosphor screen 
detector. Figure 1 shows the 
results of the charge per 
pulse, as a function of the 
power of the UV laser beam 
incident on the photocathode. 
The data shows that more 
than a million electrons per 
pulse can be extracted with 
the available UV power. 

Laser stabilization. The stability of the laser beam is crucial for achieving a high 
temporal resolution. The repetition rate of the laser oscillator was fixed at 74.9976 MHz 
to match the value of the resonance of the RF cavity after the signal is multiplied by a 
factor of 40. The repetition rate is actively stabilized using a feedback loop with a 
frequency counter and a piezo mirror inside the laser cavity. Figure 2 shows the result of 
the stabilized laser repetition rate. The repetition rate can be fixed with and RMS error 
less than 10 Hz. The beam pointing of the amplified laser pulses was also actively 
stabilized to reduce the pointing jitter. A pointing correction system was built with two 
actuated mirrors and two CCD cameras. Figure 3 shows the results, where the pointing 
drift was removed and only a pointing jitter of around 10 microradians remains. This 
jitter is too fast to fix with actuated mirrors, and most likely reflects the shot to shot jitter 
of the laser.  

 

 
 
Figure 1. Number of electrons per pulse vs average 
power of the UV laser beam. 
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Velocity mismatch. In order to 
test the performance of the laser 
pulse tilting optical setup, the 
tilt angle and pulse duration 
where measured as a function 
of position. Figure 4 shows the 
results of the measurements. 
The values were measured in 
two different ways, using an 
interferometric setup and using 
second harmonic generation. 
The measurement is described 
in more details in a publication 
[P. Zhang, J. Yang, M. 
Centurion, NJP 16 083008 
(2014)]. The optimal tilt angle 
is 56.7 degrees, and a 
mismatch of a few degrees 
does not significantly affect 
the velocity matching. The 
measurement shows that the 
angle does not change 
significantly over a distance of 
several millimeters. The pulse 
duration in principle only 
reproduces the original pulse 
duration at the image plane, 
and increases away from this 
plane. The measurement 
shows that the pulse duration 
stays below 100 fs for a 
distance of about 1 mm, and 
below 200 fs for a distance of 
about 2 mm. This is more than 
sufficient for a gas target for 
scattering experiments, which typically has a diameter of less than 0.5 mm. 

 
Figure 2. Active stabilization of the femtosecond 
oscillator repetition rate. 

 
Figure 3. Beam pointing stabilization. 
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Pulse duration. The pulse duration was measured using the streak camera. The discharge 
frequency of the streak camera was measured to be 2.6 GHz, sufficient for a resolution of 
300 fs, which is better than most commercial streak cameras. Figure 5 shows the pulse 
duration measured for electron pulses containing 2x105 electrons/pulse. In order to find 
the minimum pulse duration, both the amplitude and phase or the electric field in the RF 
cavity need to be optimized. The minimum pulse duration achieved so far was 750 fs, 
while the duration of the uncompressed beam was about 20 ps. 

 
 

 
 
Figure 4. Tilt angle and pulse duration produced by the pulse tilting setup. The initial 
duration of the laser pulse in this experiment was 60 fs. The red points are the results of 
the interferometric measurement, and the blue squares are the result of a second 
harmonic generation measurement. The black line is the theoretical prediction. 

 
 
Figure 5. A sample scan of pulse duration vs RF power into the cavity. The 
phase of the cavity needs to be optimized as well to reach the minimum pulse 
duration.  
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Theoretical component (Anthony F. Starace, co-P.I.):   
 
The distortion of the He ground state charge distribution in a Ti:sapphire laser field of 
intensity 1013 W/cm2, as exhibited in the elastic scattering cross section for a 25 keV 
electron beam, was calculated to be about 6% smaller for small momentum transfers.  

We have developed a new theory appropriate for scattering of a coherent electron beam 
from a time-varying electronic state that includes the role of inelastic scattering processes.  
We consider pump-probe processes in which a laser pulse creates a coherent 
superposition of target states that are probed by incident electron pulses. Varying the 
pump-probe delay time, the delay-dependent scattering intensities record the ensuing 
electronic motions. The key idea for describing the time-dependent scattering is to use a 
coherent wave function comprising the wave packets of both the projectile electron and 
the target. The latter are localized in space and time, so scattering events can be defined 
and analyzed properly. The scattering intensities, having the target information, are 
obtained by following the development of the wave packets. Our results for a 10 keV 100 
attoseconds (FWHM) electron pulse diffracted by a coherent superposition of 3p+4p 
states of the H atom show that inelastic processes are significant for small scattering 
angles. However, the time variation of the total diffraction signal (including both 
elastically and inelastically scattered electrons) is found to remain significant, indicating 
the ability of ultrafast electron diffraction to detect electron motion in atomic and 
molecular targets.  This work has been published [H.-C. Shao and A.F. Starace, “Imaging 
Coherent Electronic Motion in Atoms by Ultrafast Electron Diffraction,” Phys. Rev. A 88, 
062711 (2013); DOI: 10.1103/PhysRevA.88.062711] and was selected by the editors of 
Physical Review A as an “Editor’s Selection.” 

We have also developed a time-dependent scattering theory for energy-resolved ultrafast 
(attosecond) electron diffraction. This work shows that by energy-resolving particular 
inelastic transitions one can obtain valuable information on time-varying target electronic 
states.  This work has been published [H.-C. Shao and A.F. Starace, “Imaging Electronic 
Motions in Atoms by Energy-Resolved Ultrafast Electron Diffraction,” Phys. Rev. A 90, 
032710 (2014). DOI: 10.1103/PhysRevA.90.032710].  It was also the subject of an 
invited talk presented on 12 December 2015 at the 14th International Symposium on 
Ultrafast Intense Laser Science, 9-13 December 2015, Kauai, HI. 

 

Archival publications during reporting period: 

P. Zhang, J. Yang and M. Centurion, “Tilted femtosecond pulses for velocity matching in 
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